Sechseck

Aus PlusPedia
Wechseln zu: Navigation, Suche
Das regelmäßige Sechseck

Das Sechseck oder Hexagon (von altgriechisch ἑξάγωνον hexágōnon) ist ein Vieleck und kann aus sechs Dreiecken gebildet werden. Ein Sonderfall ist das regelmäßige Sechseck, mit dem ähnlich wie mit dem Quadrat (Geometrie) eine ebene Fläche ausgelegt werden kann. Aus der Natur ist diese Form als Bienenwabe bekannt.

Die Flächenberechnung des regelmäßigen Sechsecks erfolgt ausgehend vom Satz des Pythagoras:

a2 + b2 = c2

Damit kann zunächst die Höhe eines einzelnen Dreiecks berechnet werden, da alle drei Seiten dieses Dreiecks gleich lang sind. Aus A = g · h/2 wird hier A =a · ri /2

und ri2 + (a/2)2 = a2 => ri2 + a2/4 = a2  => ri2 = a2 − a2/4  => ri2 = 3/4 · a2

Daraus folgt ri = a/2 · √3 und somit A = a ·(a/2 · √3)/2 bzw. A = a2/4 · √3  für das einzelne Dreieck. Bei sechs Dreiecken sind es also

F = 6 A = 6a2/4 · √3 oder kürzer F = 3a2/2 · √3

Diesen Artikel melden!
Verletzt dieser Artikel deine Urheber- oder Persönlichkeitsrechte?
Hast du einen Löschwunsch oder ein anderes Anliegen? Dann nutze bitte unser Kontaktformular

PlusPedia Impressum
Diese Seite mit Freunden teilen:
Mr Wong Digg Delicious Yiggit wikio Twitter
Facebook




Bitte Beachte:
Sämtliche Aussagen auf dieser Seite sind ohne Gewähr.
Für die Richtigkeit der Aussagen übernimmt die Betreiberin keine Verantwortung.
Nach Kenntnissnahme von Fehlern und Rechtsverstößens ist die Betreiberin selbstverständlich bereit,
diese zu beheben.

Verantwortlich für jede einzelne Aussage ist der jeweilige Erstautor dieser Aussage.
Mit dem Ergänzen und Weiterschreiben eines Artikels durch einen anderen Autor
werden die vorhergehenden Aussagen und Inhalte nicht zu eigenen.
Die Weiternutzung und Glaubhaftigkeit der Inhalte ist selbst gegenzurecherchieren.


Typo3 Besucherzähler - Seitwert blog counter
java hosting vpn norway